高齡社會設計國際論壇
International Conference on Design for Aging Society

Designing Sustainable and Inclusive Communities for an Aging Society: Challenges, Solutions, and Future Talents

2024.8.8(Thu)-8.9(Fri)
國立成功大學力行校區崇華廳


Designing Sustainable and Inclusive Communities for an Aging Society: Challenges, Solutions, and Future Talents

2024.8.8(Thu)-8.9(Fri)
國立成功大學力行校區崇華廳


import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)

import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)

import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)

import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)

關於超高齡社會的設計想像 Design Imaginations for the Super-Aged Society

在這個論壇中,將聚焦於探索超高齡社會所帶來的挑戰和機遇,並專注於大學如何透過創新的設計思維提供解決方案。隨著社會人口結構的轉變,老年人口的比例急速上升,這不僅帶來了對健康護理、生活支持與社會參與的需求,同時也促使我們重新定義教育的價值和目的。

本論壇將邀請學者、設計師、教育工作者及政策制定者共同參與,旨在促進跨領域的對話與合作,激發新的教學方法和學習模式,以滿足這個日益增長的人口群體的多樣化需求。從課堂內容到學習環境的設計,從專業技能到生活技能的培養,本次研討會將深入探討如何通過教育的力量,不僅提高老年人的生活質量,也為社會的可持續發展貢獻智慧和力量。

import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)


import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)

import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)


import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)

import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)


import pandas as pd


# Assume these are the national average values

average_values = {

    "age_range": ["65-70", "71-75", "76-80", "81-85", "86+"],

    "upper_body_strength": [50, 45, 40, 35, 30],  # Upper body strength

    "lower_body_strength": [60, 55, 50, 45, 40],  # Lower body strength

    "grip_strength": [30, 28, 25, 22, 20],        # Grip strength

    "reaction_speed": [0.5, 0.6, 0.7, 0.8, 0.9],  # Reaction speed (seconds)

    "muscle_mass": [70, 65, 60, 55, 50]           # Muscle mass (kg)

}


# Convert the average values to a DataFrame

average_df = pd.DataFrame(average_values)


def analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass):

    # Determine the age range based on age

    if 65 <= age <= 70:

        age_range = "65-70"

    elif 71 <= age <= 75:

        age_range = "71-75"

    elif 76 <= age <= 80:

        age_range = "76-80"

    elif 81 <= age <= 85:

        age_range = "81-85"

    else:

        age_range = "86+"

    

    # Find the corresponding average values

    avg_values = average_df[average_df['age_range'] == age_range].iloc[0]

    

    # Calculate the difference percentage

    def calculate_difference_percentage(actual, average):

        return ((actual - average) / average) * 100

    

    differences = {

        "upper_body_strength_diff": calculate_difference_percentage(upper_body_strength, avg_values["upper_body_strength"]),

        "lower_body_strength_diff": calculate_difference_percentage(lower_body_strength, avg_values["lower_body_strength"]),

        "grip_strength_diff": calculate_difference_percentage(grip_strength, avg_values["grip_strength"]),

        "reaction_speed_diff": calculate_difference_percentage(reaction_speed, avg_values["reaction_speed"]),

        "muscle_mass_diff": calculate_difference_percentage(muscle_mass, avg_values["muscle_mass"]),

    }

    

    return differences


# Test data

age = 72

upper_body_strength = 50

lower_body_strength = 55

grip_strength = 27

reaction_speed = 0.65

muscle_mass = 64


result = analyze_elderly_fitness(age, upper_body_strength, lower_body_strength, grip_strength, reaction_speed, muscle_mass)

print(result)

議程 Agenda

Day 1

Aug. 8 (Thu)

永續高齡社會的未來情境設計

Designing a future scenario of sustainable aging society

Day 2

Aug. 9 (Fri)

大學社會責任下的場域人才培育

Talent cultivation under university social responsibility

主要講者 Key Speaker

Four word-class thought leaders will inspire and inform you.

Prof. Suzuki Masayuki

Chiba University, Japan

Prof. Yamada Kyota

University of Tsukuba , Japan

Prof. Suzuki Masayuki

Chiba University, Japan

Prof. Suzuki Masayuki

Chiba University, Japan

Prof. Yamada Kyota

University of Tsukuba , Japan

Prof. Yamada Kyota

University of Tsukuba , Japan

常見問題 FAQ

論壇發表是以何種語言進行呢?

可以只參加其中一天嗎?

是否會提供參加證明?

論壇發表是以何種語言進行呢?

可以只參加其中一天嗎?

是否會提供參加證明?

論壇發表是以何種語言進行呢?

可以只參加其中一天嗎?

是否會提供參加證明?

論壇發表是以何種語言進行呢?

可以只參加其中一天嗎?

是否會提供參加證明?

指導單位︰教育部、教育部大學社會責任推動中心

主辦單位︰國立成功大學

執行單位︰國立成功大學規劃設計學院、國立成功大學USR 相伴2026計畫

合辦單位︰國立成功大學社會創新型USR資源中心

指導單位︰教育部、教育部大學社會責任推動中心

主辦單位︰國立成功大學

執行單位︰國立成功大學規劃設計學院、國立成功大學USR 相伴2026計畫

合辦單位︰國立成功大學社會創新型USR資源中心

聯絡我們

聯絡我們